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ABSTRACT: 

 In this paper, we introduce the concept of 𝜏∗-generalized 𝛼 continuous multifunctions in topological spaces 

and study some of their properties where 𝜏∗ is defined by 𝜏∗={G: 𝑐𝑙∗(𝐺𝑐)= 𝐺𝑐} 
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1. INTRODUCTION 

 In 1965, Njastad [9] introduced a weak form of open sets called α-sets and Mashhour et al. [8] 

introduced the concept of α- continuous mappings in 1983.  In 1982, the author Noiri. T [13] defined a 

function from a topological space into a topological space to be strongly semi-continuous if the inverse 

image of each open set is an α-set. In 1986, Neubrunn [10] extended these functions to multifunctions and 

introduced the notion of upper (lower) α-continuous multifunctions. Various types of functions play a 

significant role in the theory of classical point set topology. A great number of papers dealing with such 

functions have appeared, and many of them have been extended to the setting of multifunctions. A 

multifunction is a set-valued function.  

Multifunction in topological spaces have been extensively studied by general topologists. For any 

two sets X and Y, F: X→ Y is a multifunction, if for each 𝑥 ∈ X and F(𝑥) is a non empty subset of Y. For a 

multifunction F: X→ Y, upper and lower inverse subset B of Y is denoted by 𝐹+(B) and 𝐹−(B) respectively 

that is 𝐹+(B)={𝑥 ∈ X: F(𝑥)⊆B} and  𝐹− (B)={𝑥∈X:F(𝑥) ∩B≠ ∅}. The graph G(F) of the multifunctions F: 

X → Y is strongly closed if for each(𝑥, y) ∉ G(F), there exist open sets U and V containing 𝑥 and y 

respectively such that (U×cl(V)∩G(F)= ∅. Throughout this paper, the space (X, τ∗) and (Y, σ) always mean 

topological spaces and F: X→Y represents a multivalued function. The concept of multifunctions has 

advanced in a variety of ways and applications of this theory can be found, specially in functional analysis 

and fixed point theory.  

2 .Preliminaries: 

Definition: 2.1[9] 

Let X  be a topological space and A be a subset of X. The closure of A and interior of A are denoted by 𝑐𝑙 A 

and int(A), respectively. 
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A subset A is said to be 𝛼-open if A⊂int(𝑐𝑙(int(A))). 

 

 

Definition: 2.2[15] 

A subset A is called an 𝛼-neighbourhood of a point 𝑥 in X if there exists U ∈ 𝛼(𝑥) such that 𝑥 ∈U⊂A. 

Lemma: 2.3 [1] 

The following are equivalent for a subset A of a topological space X: 

(i) A∈ 𝛼(𝑥) 

(ii) U⊂A⊂int(𝑐𝑙 (U)) for some open set U. 

(iii)U⊂A⊂s𝑐𝑙 (U) for some open set U. 

(iv) A⊂s𝑐𝑙 (int(A)). 

Lemma: 2.4 [12] 

The following properties hold for a subset A of a topological spaces X: 

(i) A is 𝛼-closed in X if and only if sint(𝑐𝑙(A))⊂A; 

(ii) sint(𝑐𝑙(A))= 𝑐𝑙 (int(𝑐𝑙(A))); 

(iii) 𝛼𝑐𝑙(A)= A∪ 𝑐𝑙 (int(𝑐𝑙(A))). 

Definition: 2.5 [7] 

A subset A of a topological space X is called an 𝛼-generalized closed (briefly 𝛼g-closed) if 𝑐𝑙𝛼 (A)⊆G 

whenever A⊆G and G is open in X. 

Definition: 2.6 [2] 

For the subset A of a topological space X, the generalized closure operator 𝐶𝑙∗ is defined by the intersection 

of a g-closed sets containing A.  

Definition: 2.7 [2] 

For the subset A of a topological space X, the topology 𝜏∗ is defined by 𝜏∗={G:𝐶𝑙∗(𝐺𝐶)=𝐺𝐶}. 

Definition: 2.8 

A subset A of a topological space X is called 𝜏∗-generalized 𝛼 closed set (briefly 𝜏∗-g𝛼 closed). If 𝑐𝑙∗ [(𝑐𝑙𝛼  

(A) ⊆ 𝐺 .Wherever A ⊆ 𝐺 and G is 𝜏∗open. The complement of 𝜏∗-generalized 𝛼 closed set is called the 𝜏∗ -

generalized 𝛼 open set (briefly 𝜏∗-g𝛼 open). 

Definition: 2.9 [6] 

A function f: X→Y is said to be feebly continuous if for every open set V of Y, 𝑓−1(v) is feebly open in X. 

Definition: 2.10 [8] 

A function f : X →Y is said to be 𝛼-continuous if for every open set V of Y, 𝑓−1(v) is 𝛼-open in X. 

 

 

Definition: 2.11[4] 

A function f : X→ Y from a topological space X into a topological space Y is 𝛼g-continuous if the inverse 

image of a closed set Y is 𝛼g-closed in X. 
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Definition: 2.12 [3] 

A function f : X→ Y from a topological space X into a topological space Y is 𝜏∗-g continuous if the inverse 

image of a g-closed set in Y is 𝜏∗-g closed in X.  

Definition: 2.13 

A function f : X→ Y from a topological space X into a topological space Y is 𝜏∗-generalized 𝛼 continuous 

function (briefly 𝜏∗-g𝛼 continuous) if the inverse image of a g𝛼-open set in Y is 𝜏∗-g open in X.  

Remark: 2.14 

If X is α -compact and f : X→ Y is an α-continuous surjective, then Y is compact. [11] 

If f, g: X→ Y are α continuous and Y is Hausdroff, then the set {x ∈ X f(x)⁄ = g(x)} is α-closed in X. [12] 

3. ON  𝝉∗-GENERALIZED 𝜶 CONTINUOUS MULTIFUNCTIONS : 

Definition: 3.1 

 A multifunction F: (X, τ∗)→ (Y, σ) is said to  be,  

(i) Upper 𝜏∗-generalized 𝛼 continuous at a point 𝑥 of X if for any open set V of Y such that F(𝑥)⊂ V, 

there exists U ∈ 𝜏∗-g𝛼(X) containing 𝑥 such that F(U) ⊂V; 

(ii) Lower  𝜏∗-generalized 𝛼 continuous at a point 𝑥 ∈ X if for any open set V of Y such that F(𝑥) ∩ V≠
∅, there exists U ∈ 𝜏∗-g𝛼(X) containing  𝑥 such that  F(u)∩ V≠ ∅ for every u ∈U; 

(iii) Upper (resp. lower) 𝜏∗ -generalized 𝛼 continuous if it is upper (resp. lower) 𝜏∗ -generalized 

𝛼 continuous at every point of  X. 

Theorem: 3.2 

The following are equivalent for a multifunction F: (X, 𝜏∗)→ (𝑌, 𝜎) 

(i) F is upper  τ∗-gα continuous at a point 𝑥 ∈ X; 

(ii) 𝑥 ∈ τ∗-gs𝑐𝑙 (int  F+(V)) for any open set V of Y containing F(𝑥); 

(iii) For and U ∈ τ∗-gsO(X) containing 𝑥 and any open set V of Y  containing F(𝑥), there exists  

a  nonempty  open  set 𝑈𝑉 of  X  such  that 𝑈𝑉 ⊂ U and F(𝑈𝑉)⊂ V . 

Proof : 

(i)⇒ (ii) Let V be any open set such that F(𝑥)⊂ V. Then there exists U ∈ τ∗-gα(X) containing  𝑥  

such that F(U) C V ; hence  𝑥 ∈ U ⊂ F+(V). Since U is τ∗-gα open, 

By Lemma 2.3 (iv) we have  𝑥 ∈ U ⊂ 𝜏∗-gs𝑐𝑙 (int(V)) ⊂ 𝜏∗-gs𝑐𝑙 (int 𝐹+V))) . 

(ii)⇒ (iii) Let  V  be  any  open  set  of  Y   such  that  F(𝑥) ⊂ V .  Then  𝑥 ∈ 𝜏∗-gs𝑐𝑙 (int  𝐹+V))).  Let  U  

be   any  𝜏∗-generalized semi-open set containing  𝑥.  Then U ∩ int ( 𝐹+V))≠ ∅   and  U ∩ int( 𝐹+(V)) ∈ 𝜏∗-

gsO(X).    Put  𝑈𝑉  =  int[U∩ int( 𝐹+V))] ,  then  𝑈𝑉   is  a  nonempty  open  set of Y, 𝑈𝑉⊂ U and F(𝑈𝑉)⊂ V . 

(iii)⇒ (i) Let 𝜏∗-gsO(X, 𝑥) be the family of all 𝜏∗-generalized semi-open sets of X containing 𝑥 . Let V 

be any open set of Y containing F(𝑥).  For  each  U ∈ 𝜏∗-gsO(X, 𝑥), there exists a  nonempty  open  set  

𝑈𝑉  such  that  𝑈𝑉 ⊂ U  and  F(𝑈𝑉) ⊂ V. Let W=∪{𝑈𝑉/U∈ 𝜏∗-gsO(X, 𝑥)}. Then W is open in X, 𝑥 ∈
𝜏∗-gs𝑐𝑙 (W) and F(W) ⊂ V. Put S=W U{𝑥}, then W⊂S⊂ 𝜏∗-gs𝑐𝑙 (w). Then by lemma 2.3 (iii), 𝑥 ∈ 𝜏∗-gs ∈ 

𝜏∗-g𝛼(X) and        F(S) ⊂ V . Hence F  is upper 𝜏∗-g𝛼 continuous at 𝑥. 

Theorem: 3.3 

 

 The following are equivalent for a multifunction F : (X, τ∗)→ (Y, σ) 

(i) F is upper τ∗-gα continuous. 

(ii)  F+(V) ∈ τ∗-gα (X) for any open set V of  Y . 

(iii)  F−(V)  is  τ∗-gα closed  in  X   for any  closed  set  V   of  Y . 

(iv) τ∗-gsint(𝑐𝑙( F−(B)) ⊂   F−(𝑐𝑙 (B)) for any  set  B   of  Y . 

(v) τ∗-gα𝑐𝑙 ( F−(B))⊂  F−(𝑐𝑙 (B)) for any set B of Y . 
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(vi) For each point  𝑥 of X and each neighbourhood V of F(𝑥),  F+(V) is an α-neighbourhood of  

𝑥 . 

(vii) For each point  𝑥 ∈  X and each  neighbourhood  V of F( 𝑥 ) , there exists an  α -

neighbourhood U of  𝑥  such that F(U)⊂  V . 

Proof: 

(i)⇒(ii) Let V be any open set of Y and let 𝑥 ∈ F+(V). By Theorem 3.2, 𝑥 ∈ τ∗-gs𝑐𝑙 (int F+(V)). Then  

F+(V) ⊂  τ∗-gs𝑐𝑙 (int (F+ (V))). By Lemma 2.3 (i), F+(V)∈ τ∗-gα(X) . 

(ii)⇒(iii)In fact that F+(Y- B)=  X - F−(B)  for any subset B of Y . 

(iii)⇒(iv)Let B be any subset of  Y. Then F−(𝑐𝑙(B))  is  τ∗-gα closed  in Y. By Lemma 2.4 (i), we 

have τ∗-gsint(𝑐𝑙 F−(B))⊂  τ∗-gsint(𝑐𝑙 (F− 𝑐𝑙 (B)))) ⊂  F−(𝑐𝑙 (B)) . 

(iv)⇒(v)Let B be any subset of Y. By Lemma 2.4 (iii), we have τ∗-gα𝑐𝑙(F− (B))=  F−(B) ∪ τ∗-gsint(𝑐𝑙 
F−(B)))⊂  F−(𝑐𝑙(B)) . 

(v)⇒(iii)Let V be any closed set of Y. Then we have τ∗-gα𝑐𝑙(F−(V))⊂ F−(𝑐𝑙 (V))= F−(V). Hence F− 

(V) is τ∗-gα closed in  X. 

(ii)⇒(vi) Let  𝑥 ∈ X and V  be a  neighbourhood  of  F(𝑥) , there exists a open set G of Y such that 

F(x) ⊂ G⊂  V. So that  𝑥 ∈ F+(G)⊂ F+(V). Since F+ (G) ∈ τ∗-gα(X), F+(V) is an α-neighbourhood of  

 𝑥. 

(vi)⇒(vii) Let  𝑥 ∈  X and V  be a  neighbourhood  of  F( 𝑥 ). Put U =F+ (V), then U is an α-

neighbourhood of   𝑥 and F(U) ⊂ V. 

(vii)⇒(i) Let  𝑥 ∈ X and V  be a  any open set  of  Y such that F(𝑥) ⊂ V. There  exists an α-

neighbourhood   U of 𝑥 such that F(U) ⊂ V. Then A∈ τ∗-gα(X) such that 𝑥 ∈ A⊂ U, hence F(A) ⊂ V. 

Theorem: 3.4 

 

The following are equivalent for a multifunction F : (X, τ∗)→ (Y, σ) 

(i) F is lower τ∗-gα continuous. 

(ii) F−(V) ∈ τ∗-gα (X) for any open set V of Y . 

(iii) F+(V)  is  τ∗-gα closed  in  X   for any  closed  set  V   of  Y . 

(iv) τ∗-gsint(𝑐𝑙 F+(B)) ⊂   F+(𝑐𝑙(B))   for any  subset  B   of  Y . 

(v) τ∗-gα 𝑐𝑙 (F+(B))⊂ F+(𝑐𝑙(B)) for any  subset B of  Y . 

(vi) F(τ∗-gα𝑐𝑙 (A))⊂  𝑐𝑙 (F(A)) for any subset A of  X. 

(vii) F(τ∗-gsint(𝑐𝑙(A)))⊂  𝑐𝑙 (F(A)) for any subset A of X. 

(viii) F(𝑐𝑙 (int(𝑐𝑙 (A))))⊂  𝑐𝑙 (F(A)) for any subset A of X. 

Proof: 

The proof (i)⇒(ii), (ii)⇒(iii), (iii)⇒(iv), (iv)⇒(v) are similar to the above theorem. 

 (v)⇒(vi)Let A  be any subset of  X. Since A⊂ 𝐹+ (F(A)), we have τ∗-gα𝑐𝑙(A) ⊂ τ∗-gα𝑐𝑙 (𝐹+(F(A))) ⊂( 

(𝐹+(𝑐𝑙 (F(A))) and F(τ∗-gαcl(A))⊂  𝑐𝑙 (F(A)). 

(vi)⇒(vii)  By lemma 2.4 (ii), F((τ∗-gsint(𝑐𝑙 (A)))⊂  𝑐𝑙 (F(A)) for any subset A of X. 

(vii)⇒(viii)  This is obvious. 

(viii)⇒(i) Let 𝑥 ∈ X and V  be any open set such that  F(x) ∩ V≠∅ .  Then  𝑥 ∈ 𝐹−(V). Now  𝐹−(V) ∈
(τ∗-gα(X). By the hypothesis, F(𝑐𝑙  (int(𝑐𝑙(𝐹+(Y-V)))) ⊂ 𝑐𝑙  (F(𝐹+(Y-V))) ⊂ Y-V and hence 𝑐𝑙  (int(𝑐𝑙 
(𝐹+(Y-V))))⊂  𝐹+(Y-V)=X-𝐹− (V). Then we have 𝐹−(V) ⊂int(𝑐𝑙(int(𝐹−(V))) and hence 𝐹−(V) ∈
 τ∗-gα(X). put U= 𝐹−(V), we have 𝑥 ∈U ∈ τ∗-gα(X) and F(u)∩V≠∅ for every u ∈ U . Hence F is lower 

 τ∗gα continuous. 

Note : 3.5 [12] 

A function f : X→Y is α-continuous if and only if it is pre continuous and semi- continuous.  

Definition: 3.6 [15] 

A subset A of a topological space X is said to  be α-paracompact  if   every  cover  of  A  by open 

sets  of  X  is  refined  by  a cover of A which consists of open sets of X and is locally finite in X.  
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Definition: 3.7 [5] 

A  subset   A   of  topological  space  X   is  said   to  be  α- regular if for each point 𝑥 ∈ A  and  each  open  

set  U  of  X  containing  𝑥,  there  exists an open set G of X such that        𝑥 ∈ G ⊂ 𝑐𝑙 (G)⊂U. 

Lemma:  3.8 

If  A  is an α -regular  α -paracompact  subset of  a topological space  X  and  U  is  an open neighbourhood  

of  A , then there  exists  an open set G of  X such  that A⊂G⊂ 𝑐𝑙(G)⊂U .[5] 

A multifunction F: X → Y is said to be punctually α-paracompact (resp. punctually α-regular) if for each  

𝑥 ∈X, F(𝑥) is α -paracompact (resp. α -regular). By α𝑐𝑙 (F) : X → Y,  we shall denote a  multifunction  

defined  as follows: [α𝑐𝑙 (F)(𝑥)] = α𝑐𝑙 (F(𝑥)) for each point 𝑥 ∈ X  . 

Lemma: 3.9 

 If F:(X, τ∗)→ (Y,σ) is punctually  α-regular and punctually α -paracompact, the                    [τ∗-

gα𝑐𝑙(F)+](V)= 𝐹+(V) for every open set V of Y . 

Proof:  

Let V be any  open  set  of   Y  and   𝑥 ∈ [τ∗-gα𝑐𝑙 (F)+](V). Then τ∗-gα𝑐𝑙 (F(𝑥)  ⊂  V and hence 

F(𝑥)⊂ V. Then, 𝑥 ∈ 𝐹+(V) and hence [τ∗-gα𝑐𝑙 (F)+](V)⊂ 𝐹+ (V).  Conversely,   let V be any open set of 

Y and   𝑥 ∈  𝐹+ (V).  Then F(x) ⊂  V.  Since  F(𝑥)  is α -regular  and  α -paracompact, by lemma 3.8 

there exists an open set G such that  F(x)⊂ G⊂  𝑐𝑙 (G)⊂ V ;hence τ∗-gα𝑐𝑙 (F(𝑥))⊂  𝑐𝑙(G) ⊂  V. So that 

𝑥 ∈ [τ∗-gα𝑐𝑙 (F)+](V) and hence 𝐹+(V)⊂ [τ∗-gα𝑐𝑙 (F)+](V).So, that [τ∗-gα𝑐𝑙 (F)+](V)= 𝐹+(V) . 

Theorem: 3.10 

Let  F : (X, τ∗)  →(Y, σ) be punctually α -regular and punctually α -paracompact.  Then  F  is  upper  τ∗-gα 

continuous  if  and  only  if  τ∗-gα𝑐𝑙(F):  (X, τ∗)→ (Y,σ) is upper  τ∗-gα continuous. 

Proof: 

Suppose that F is upper τ∗-gα continuous. Let 𝑥 ∈ X and V be any open set of Y such that τ∗-gα𝑐𝑙 
(F)(𝑥 )⊂ V. By Lemma 3.9, we have 𝑥 ∈ [  τ∗ -gα𝑐𝑙  (F)]+ (V) =  𝐹+  (V). Since F is upper τ∗ -gα 

continuous, there exists U ∈ τ∗-gα(X) containing  𝑥  such  that  F(U)⊂  V.  Since  F(u)  is α -

paracompact and α -regular for each u∈ U , by Lemma 3.8, there exists an open set  H  such that 

F(u)⊂ H⊂ 𝑐𝑙 (H)⊂ V.  Then,  we have  τ∗-gα𝑐𝑙 (F(u))⊂  𝑐𝑙(H)⊂ V for each u ∈ U and hence τ∗-gα𝑐𝑙 
(F(U))⊂  V. Hence τ∗-gα𝑐𝑙 (F) is upper τ∗-gα continuous. 

Conversely assume that τ∗-gα𝑐𝑙 (F) : (X, τ∗)→ (Y,σ)  is  upper  τ∗-gα continuous.  Let 𝑥 ∈X  and  V  

be  any  open  set  of Y  such  that   F(x)⊂  V. By  Lemma  3.9, we  have 𝑥 ∈ 𝐹+(V) =[τ∗-gα𝑐𝑙 
(F)+](V)  and  hence [τ∗-gα𝑐𝑙 (F)(𝑥)⊂ V. Since τ∗-gα𝑐𝑙 (F) is upper τ∗-gα continuous,  there  exists  U ∈  

τ∗ -gα(X  )  containing  𝑥  such that τ∗ -gα𝑐𝑙  (F(U))⊂  V ; hence F(U) ⊂V. Then F  is upper τ∗ -

gα continuous. 

Theorem: 3.11 

A  multifunction   F : (X, τ∗)→ (Y,σ) is lower τ∗-gα continuous if and only if  τ∗-gα𝑐𝑙 (F) : (X, τ∗) → (Y,σ) is 

lower τ∗-gα continuous. 

Theorem: 3.12 

If F: (X, τ∗) →(Y, σ) is upper (resp. lower) τ∗-gα continuous  and  F(X)  is  endowed  with subspace  topology, then  F 

: X →F (X) is upper(resp. lower)  τ∗-gα continuous. 

Proof: 

Since F : (X, τ∗) →(Y, σ) is upper(resp. lower)  τ∗-gα continuous for every open subset V of Y, 𝐹+(V ∩ F 

(X)) =  𝐹+ (V ) ∩  𝐹+(F (X)) =  𝐹+(V) is τ∗-gα open. Hence F :  X →F (X) is upper (resp.lower)  τ∗gα 

continuous. 
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Theorem: 3.13 

 Let F : (X, τ∗) →(Y, σ) and G : (Y, σ) → (Z, μ) be two multifunctions. Then G∘F is upper (resp. lower) 

τ∗-gα continuous, if G is  semi continuous and F is τ∗-gα continuous. 

Proof: 

Let V be an open set in Z. Since G is semi continuous then (G+ (V)) is  an  open  set  in  Y   and  since  F  is  

τ∗-gα continuous  then  F +(G+(V)) = (G ∘ 𝐹)+(V) is an τ∗-gα open set in X. Thus G∘F is upper (resp. lower) 

τ∗-gα continuous. 

 

Theorem: 3.14 

 

 Let F: (X, τ∗) →(Y, σ) be a multifunction and A be an open subset of X. If F is upper (resp. lower) τ∗-gα 

continuous, then F∕A: A →Y is upper (resp. lower) τ∗-gα continuous  multifunction. 

Proof: 

  

Let V be any open subset of Y. Since F is upper (resp. lower) τ∗-gα continuous, then  𝐹+ (V) is τ∗-

gα open in X. Since A ∩ 𝐹+(V)  = 𝐹+|A (V), then  𝐹+ |A (V ) is τ∗-gα open. Hence F |A is upper 

(resp. lower) τ∗-gα continuous multifunction. 

Theorem: 3.15 

Let F:(X, τ∗) →(Y, σ) be a multifunction  and {Uα : α ∈  Δ} be    an open cover of X. If the 

restriction function F |Uα
 is upper τ∗-gα continuous for each α ∈ Δ, then F is upper τ∗-gα 

continuous. 

Proof: 

Let V be any open subset of Y. Since F ∕Uα is upper τ∗-gα continuous for each α ∈ Δ, then 𝐹+ ∕ 

Uα (V) = Uα ∩ 𝐹+(V) is τ∗-gα open set.  

Then ⋃ (α ∈ Δ Uα ∩ F+(V) =⋃ (α ∈ Δ Uα) ∩ F+(V)=X ∩ 𝐹+(V)= 𝐹+(V) is τ∗-gα open set. 

Hence, F is upper  τ∗-gα continuous. 

4.  SOME PROPERTIES 
 

Lemma:4.1 [15] 

 Let  A and B be subsets of a topological space X. 

(i)If A ∈ sO(X) ∪ pO(X) and B ∈ α (X), then A ∩ B ∈ α (A) . 

(ii)If A ⊂ B ⊂ X, A ∈ α(B)  and B ∈ α(X) , then A ∈ α(X). 

Theorem: 4.2  

 If  a  multifunction,  F :(X,  τ∗)→ (Y,σ) is  upper(resp. lower) τ∗-gα continuous XO ∈ τ∗-gpO(X)∪
τ∗-gsO(X), then the restriction F ∕ XO: X0 → Y is upper(resp. lower)  τ∗-gα continuous. 

  

Proof: 

We prove that, F is upper τ∗-gα continuous. Let 𝑥 ∈ 𝑋0 and V be any open set of Y such that (𝐹/𝑋0)(𝑥) ⊂
𝑉. Since F is upper τ∗-gα continous and (𝐹/𝑋0)(𝑥)=F(𝑥) there exists U∈ τ∗-gα(X) containing x such that 

F(U) ⊂V. Set 𝑋0=𝐹 ∩ 𝑋0, then by lemma 4.1, 𝑥 ∈ 𝑋0 ∈ τ∗-gα(𝑋0) and (F/𝑋0) 𝑋0 ⊂V.  Hence (F/𝑋0) is 

upper τ∗-gα continous . 

Theorem: 4.3  

A multifunction F: (X,  τ∗)→ (Y,σ) is  upper(resp. lower)  τ∗-gα continuous if for each 𝑥∈X there exists 

𝑋0  ∈ τ∗-gα(X)containing 𝑥 such that the restriction F∕ 𝑋0 :𝑋0  →Y is upper (resp.lower )τ∗-gα continuous. 

Proof: 

We prove that, F is upper τ∗-gα continuous. Let 𝑥∈X and V be any open set of Y such that F(𝑥)⊂V. There 

exists 𝑋0 ∈ τ∗-gα(X) containing 𝑥 such that F∕ 𝑋0 is upper τ∗-gα continuous. 

Then there exists ∪0∈ τ∗-gα( 𝑋0) containing  𝑥  such that (F/𝑋0) ⊂ 𝑋0. By lemma 4.1 ∪0∈ τ∗-gα(X) and 

F(u)= (F∕ 𝑋0)(u) for every u ∈ 𝑈0. Hence, F: (X,  τ∗)→ (Y,σ) is upper τ∗-gα continuous. 

Theorem: 4.4  

If F : (X,  τ∗)→ (Y,σ) is  upper  τ∗-gα continuous multifunction into a Hausdroff space Y and F(𝑥) is compact 
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for each 𝑥∈X, then the graph G(F) is τ∗-gα closed in X×Y 

Proof:  

Let (𝑥, y)∈ X×Y-G(F). Then y ∈Y-F (𝑥). For each a ∈F(𝑥), there exist open sets V(a) and W(a) containing a 

and y, respectively, such that V(a)∩W(a)=∅. The family {V((a))⁄a∈F(𝑥)} is an open cover of F(𝑥) and there 

exist a finite number of points in F(𝑥 ), say, 𝑎2 ,  𝑎1 …𝑎𝑛  such that F(𝑥 )⊂∪ {V(𝑥𝑖 )∕1≤i≤n}.  Set V=∪
{V(𝑥𝑖)∕1≤i≤n} and W=n{W(𝑎𝑖) )∕1≤i≤n}. Since F(𝑥) ⊂ 𝑉 and F is upper τ∗-gα continuous, there exists U∈
τ∗-gα(X) such that 𝑥∈U and F(U) ⊂V. So, we obtain F(U)∩W=∅ and hence (U×W)∩G(F)=∅. Since U×W 

is τ∗-gα-open X ×Y and (𝑥, y)∈ U×W, (𝑥,y)∉  τ∗-g𝛼𝑐𝑙 (𝐺(𝐹)) and G(F) is τ∗-gα closed in X×Y. 
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