JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

ON τ^* -GENERALIZED α CONTINUOUS **MULTIFUNCTIONS IN** TOPOLOGICAL SPACES

A.Ponsuryadevi 1 and R.Selvi* 2

¹Research Scholar, Department of Mathematics, Sri Parasakthi College for Women, Courtallam, Affiliated to Manonmaniam Sundaranar University, Tirunelveli.

²Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam, Affiliated to Manonmaniam Sundaranar University, Tirunelveli.

*Corresponding author.

ABSTRACT:

In this paper, we introduce the concept of τ^* -generalized α continuous multifunctions in topological spaces and study some of their properties where τ^* is defined by $\tau^* = \{G: cl^*(G^c) = G^c\}$

KEY WORDS: τ^* -g α open set, τ^* -g α closed set, τ^* -g α continuous

1. INTRODUCTION

In 1965, Niastad [9] introduced a weak form of open sets called α-sets and Mashhour et al. [8] introduced the concept of α- continuous mappings in 1983. In 1982, the author Noiri. T [13] defined a function from a topological space into a topological space to be strongly semi-continuous if the inverse image of each open set is an α-set. In 1986, Neubrunn [10] extended these functions to multifunctions and introduced the notion of upper (lower) α-continuous multifunctions. Various types of functions play a significant role in the theory of classical point set topology. A great number of papers dealing with such functions have appeared, and many of them have been extended to the setting of multifunctions. A multifunction is a set-valued function.

Multifunction in topological spaces have been extensively studied by general topologists. For any two sets X and Y, F: $X \rightarrow Y$ is a multifunction, if for each $x \in X$ and F(x) is a non empty subset of Y. For a multifunction F: $X \rightarrow Y$, upper and lower inverse subset B of Y is denoted by $F^+(B)$ and $F^-(B)$ respectively that is $F^+(B) = \{x \in X: F(x) \subseteq B\}$ and $F^-(B) = \{x \in X: F(x) \cap B \neq \emptyset\}$. The graph G(F) of the multifunctions F: $X \to Y$ is strongly closed if for each $(x, y) \notin G(F)$, there exist open sets U and V containing x and y respectively such that $(U \times cl(V) \cap G(F) = \emptyset$. Throughout this paper, the space (X, τ^*) and (Y, σ) always mean topological spaces and F: X -> Y represents a multivalued function. The concept of multifunctions has advanced in a variety of ways and applications of this theory can be found, specially in functional analysis and fixed point theory.

2 .Preliminaries:

Definition: 2.1[9]

Let X be a topological space and A be a subset of X. The closure of A and interior of A are denoted by cl A and int(A), respectively.

A subset A is said to be α -open if $A \subset int(cl(int(A)))$.

Definition: 2.2[15]

A subset A is called an α -neighbourhood of a point x in X if there exists $U \in \alpha(x)$ such that $x \in U \subset A$.

Lemma: 2.3 [1]

The following are equivalent for a subset A of a topological space X:

- (i) $A \in \alpha(x)$
- (ii) $U \subset A \subset int(cl(U))$ for some open set U.
- (iii) $U \subset A \subset scl(U)$ for some open set U.
- (iv) $A \subset scl$ (int(A)).

Lemma: 2.4 [12]

The following properties hold for a subset A of a topological spaces X:

- (i) A is α -closed in X if and only if $sint(cl(A)) \subset A$;
- (ii) sint(cl(A)) = cl (int(cl(A)));
- (iii) $\alpha cl(A) = A \cup cl (int(cl(A))).$

Definition: 2.5 [7]

A subset A of a topological space X is called an α -generalized closed (briefly α g-closed) if $cl_{\alpha}(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.

Definition: 2.6 [2]

For the subset A of a topological space X, the generalized closure operator Cl^* is defined by the intersection of a g-closed sets containing A.

Definition: 2.7 [2]

For the subset A of a topological space X, the topology τ^* is defined by $\tau^* = \{G: Cl^*(G^C) = G^C\}$.

Definition: 2.8

A subset A of a topological space X is called τ^* -generalized α closed set (briefly τ^* -g α closed). If cl^* [(cl_{α} (A) $\subseteq G$.Wherever A $\subseteq G$ and G is τ^* -open. The complement of τ^* -generalized α closed set is called the τ^* -generalized α open set (briefly τ^* -g α open).

Definition: 2.9 [6]

A function f: $X \rightarrow Y$ is said to be feebly continuous if for every open set V of Y, $f^{-1}(v)$ is feebly open in X.

Definition: 2.10 [8]

A function f: X \rightarrow Y is said to be α -continuous if for every open set V of Y, $f^{-1}(v)$ is α -open in X.

Definition: 2.11[4]

A function $f: X \to Y$ from a topological space X into a topological space Y is αg -continuous if the inverse image of a closed set Y is αg -closed in X.

Definition: 2.12 [3]

A function $f: X \to Y$ from a topological space X into a topological space Y is τ^* -g continuous if the inverse image of a g-closed set in Y is τ^* -g closed in X.

Definition: 2.13

A function $f: X \to Y$ from a topological space X into a topological space Y is τ^* -generalized α continuous function (briefly τ^* -g α continuous) if the inverse image of a g α -open set in Y is τ^* -g open in X.

Remark: 2.14

If X is α -compact and f: X \rightarrow Y is an α -continuous surjective, then Y is compact. [11]

If f, g: $X \to Y$ are α continuous and Y is Hausdroff, then the set $\{x \in X/f(x) = g(x)\}$ is α -closed in X. [12]

3. ON τ^* -GENERALIZED α CONTINUOUS MULTIFUNCTIONS :

Definition: 3.1

A multifunction F: $(X, \tau^*) \rightarrow (Y, \sigma)$ is said to be,

- (i) Upper τ^* -generalized α continuous at a point x of X if for any open set V of Y such that $F(x) \subset V$, there exists $U \in \tau^*$ -g $\alpha(X)$ containing x such that $F(U) \subset V$;
- (ii) Lower τ^* -generalized α continuous at a point $x \in X$ if for any open set V of Y such that $F(x) \cap V \neq X$ \emptyset , there exists $U \in \tau^*$ -g $\alpha(X)$ containing x such that $F(u) \cap V \neq \emptyset$ for every $u \in U$;
- (iii) Upper (resp. lower) τ^* -generalized α continuous if it is upper (resp. lower) τ^* -generalized α continuous at every point of X.

Theorem: 3.2

The following are equivalent for a multifunction $F: (X, \tau^*) \rightarrow (Y, \sigma)$

- (i) F is upper τ^* -ga continuous at a point $x \in X$;
- (ii) $x \in \tau^*$ -gscl (int F⁺(V)) for any open set V of Y containing F(x);
- (iii) For and $U \in \tau^*$ -gsO(X) containing x and any open set V of Y containing F(x), there exists a nonempty open set U_V of X such that $U_V \subset U$ and $F(U_V) \subset V$.

Proof:

(i) \Rightarrow (ii) Let V be any open set such that $F(x) \subset V$. Then there exists $U \in \tau^*$ -ga(X) containing x such that $F(U) \subset V$; hence $x \in U \subset F^+(V)$. Since U is τ^* -ga open,

By Lemma 2.3 (iv) we have $x \in U \subset \tau^*$ -gscl (int(V)) $\subset \tau^*$ -gscl (int F^+V))).

(ii) \Rightarrow (iii) Let V be any open set of Y such that $F(x) \subset V$. Then $x \in \tau^*$ -gscl (int F^+V)). Let U be any τ^* -generalized semi-open set containing x. Then $U \cap \text{int}(F^+V) \neq \emptyset$ and $U \cap \text{int}(F^+(V)) \in \tau^*$ gsO(X). Put $U_V = \inf[U \cap \inf(F^+V)]$, then U_V is a nonempty open set of Y, $U_V \subset U$ and $F(U_V) \subset V$. (iii) \Rightarrow (i) Let τ^* -gsO(X, x) be the family of all τ^* -generalized semi-open sets of X containing x. Let V be any open set of Y containing F(x). For each $U \in \tau^*$ -gsO(X, x), there exists a nonempty open set U_V such that $U_V \subset U$ and $F(U_V) \subset V$. Let $W=\cup \{U_V/U \in \tau^* - gsO(X, x)\}$. Then W is open in X, $x \in V$ τ^* -gscl (W) and $F(W) \subset V$. Put $S=W \cup \{x\}$, then $W \subset S \subset \tau^*$ -gscl (w). Then by lemma 2.3 (iii), $x \in \tau^*$ -gs \in τ^* -g $\alpha(X)$ and $F(S) \subset V$. Hence F is upper τ^* -g α continuous at α .

Theorem: 3.3

The following are equivalent for a multifunction $F: (X, \tau^*) \rightarrow (Y, \sigma)$

- (i) F is upper τ^* -ga continuous.
- (ii) $F^+(V) \in \tau^*$ -ga (X) for any open set V of Y.
- (iii) $F^-(V)$ is τ^* -ga closed in X for any closed set V of Y.
- (iv) τ^* -gsint($cl(F^-(B)) \subset F^-(cl(B))$ for any set B of Y.
- (v) τ^* -gacl (F⁻(B)) \subset F⁻(cl (B)) for any set B of Y.

- (vi) For each point x of X and each neighbourhood V of F(x), $F^+(V)$ is an α -neighbourhood of x.
- (vii) For each point $x \in X$ and each neighbourhood V of F(x), there exists an α -neighbourhood U of x such that $F(U) \subset V$.

Proof:

- (i) \Rightarrow (ii) Let V be any open set of Y and let $x \in F^+(V)$. By Theorem 3.2, $x \in \tau^*$ -gscl (int $F^+(V)$). Then $F^+(V) \subset \tau^*$ -gscl (int $(F^+(V))$). By Lemma 2.3 (i), $F^+(V) \in \tau^*$ -g $\alpha(X)$.
- (ii) \Rightarrow (iii)In fact that $F^+(Y-B)=X-F^-(B)$ for any subset B of Y.
- (iii) \Rightarrow (iv)Let B be any subset of Y. Then $F^-(cl(B))$ is τ^* -ga closed in Y. By Lemma 2.4 (i), we have τ^* -gsint($cl(F^-(B)) \subset \tau^*$ -gsint($cl(F^-(Cl(B))) \subset F^-(Cl(B))$).
- (iv) \Rightarrow (v)Let B be any subset of Y. By Lemma 2.4 (iii), we have τ^* -g α c $l(F^-(B))=F^-(B) \cup \tau^*$ -gsint($cl(B^-(B)) \subset F^-(cl(B))$.
- (v) \Rightarrow (iii)Let V be any closed set of Y. Then we have τ^* -g $\alpha cl(F^-(V)) \subset F^-(cl(V)) = F^-(V)$. Hence $F^-(V)$ is τ^* -g α closed in X.
- (ii) \Rightarrow (vi) Let $x \in X$ and V be a neighbourhood of F(x), there exists a open set G of Y such that $F(x) \subset G \subset V$. So that $x \in F^+(G) \subset F^+(V)$. Since $F^+(G) \in \tau^*$ -g $\alpha(X)$, $F^+(V)$ is an α -neighbourhood of α .
- (vi) \Rightarrow (vii) Let $x \in X$ and V be a neighbourhood of F(x). Put $U = F^+(V)$, then U is an α -neighbourhood of x and $F(U) \subset V$.
- (vii) \Rightarrow (i) Let $x \in X$ and V be a any open set of Y such that $F(x) \subset V$. There exists an α -neighbourhood U of x such that $F(U) \subset V$. Then $A \in \tau^*$ -g $\alpha(X)$ such that $x \in A \subset U$, hence $F(A) \subset V$.

Theorem: 3.4

The following are equivalent for a multifunction $F: (X, \tau^*) \rightarrow (Y, \sigma)$

- (i) F is lower τ^* -ga continuous.
- (ii) $F^-(V) \in \tau^*$ -ga (X) for any open set V of Y.
- (iii) $F^+(V)$ is τ^* -ga closed in X for any closed set V of Y.
- (iv) τ^* -gsint($cl \ F^+(B)$) $\subset F^+(cl(B))$ for any subset B of Y.
- (v) τ^* -ga $cl(F^+(B)) \subset F^+(cl(B))$ for any subset B of Y.
- (vi) $F(\tau^*-g\alpha cl(A)) \subset cl(F(A))$ for any subset A of X.
- (vii) $F(\tau^*-gsint(cl(A))) \subset cl(F(A))$ for any subset A of X.
- (viii) $F(cl (int(cl (A)))) \subset cl (F(A))$ for any subset A of X.

Proof:

The proof (i) \Rightarrow (ii), (ii) \Rightarrow (iii), (iii) \Rightarrow (iv), (iv) \Rightarrow (v) are similar to the above theorem.

- (v) \Rightarrow (vi)Let A be any subset of X. Since $A \subseteq F^+$ (F(A)), we have τ^* -gacl(A) $\subseteq \tau^*$ -gacl (F^+ (F(A))) \subseteq (F^+ (cl (F(A))) and $F(\tau^*$ -gacl(A)) \subseteq cl (F(A)).
- $(vi) \Rightarrow (vii)$ By lemma 2.4 (ii), $F((\tau^*-gsint(cl(A))) \subset cl(F(A))$ for any subset A of X.
- (vii)⇒(viii) This is obvious.
- (viii) \Rightarrow (i) Let $x \in X$ and V be any open set such that $F(x) \cap V \neq \emptyset$. Then $x \in F^-(V)$. Now $F^-(V) \in (\tau^* g\alpha(X))$. By the hypothesis, $F(cl\ (int(cl(F^+(Y-V)))) \subset cl\ (F(F^+(Y-V))) \subset Y-V$ and hence $cl\ (int(cl(F^+(Y-V)))) \subset F^+(Y-V)=X-F^-(V)$. Then we have $F^-(V) \subset int(cl(int(F^-(V)))$ and hence $F^-(V) \in \tau^* g\alpha(X)$. put $U = F^-(V)$, we have $x \in U \in \tau^* g\alpha(X)$ and $F(u) \cap V \neq \emptyset$ for every $u \in U$. Hence F is *lower* $\tau^* g\alpha$ continuous.

Note: 3.5 [12]

A function $f: X \rightarrow Y$ is α -continuous if and only if it is pre continuous and semi-continuous.

Definition: 3.6 [15]

A subset A of a topological space X is said to be α -paracompact if every cover of A by open sets of X is refined by a cover of A which consists of open sets of X and is locally finite in X.

Definition: 3.7 [5]

A subset A of topological space X is said to be α -regular if for each point $x \in A$ and each open set U of X containing x, there exists an open set G of X such that $x \in G \subset cl(G) \subset U$.

Lemma: 3.8

If A is an α -regular α -paracompact subset of a topological space X and U is an open neighbourhood of A, then there exists an open set G of X such that $A \subset G \subset cl(G) \subset U$.[5]

A multifunction F: $X \to Y$ is said to be punctually α -paracompact (resp. punctually α -regular) if for each $x \in X$, F(x) is α -paracompact (resp. α -regular). By αcl (F) : $X \to Y$, we shall denote a multifunction defined as follows: $[\alpha cl$ (F)(x)] = αcl (F(x)) for each point $x \in X$.

Lemma: 3.9

If $F:(X,\tau^*) \to (Y,\sigma)$ is punctually α -regular and punctually α -paracompact, the $g\alpha cl(F)^+|V| = F^+(V)$ for every open set V of Y.

Proof:

Let V be any open set of Y and $x \in [\tau^* - g\alpha cl (F)^+](V)$. Then $\tau^* - g\alpha cl (F(x)) \subset V$ and hence $F(x) \subset V$. Then, $x \in F^+(V)$ and hence $[\tau^* - g\alpha cl (F)^+](V) \subset F^+(V)$. Conversely, let V be any open set of Y and $x \in F^+(V)$. Then $F(x) \subset V$. Since F(x) is α -regular and α -paracompact, by lemma 3.8 there exists an open set G such that $F(x) \subset G \subset cl (G) \subset V$; hence $\tau^* - g\alpha cl (F(x)) \subset cl(G) \subset V$. So that $x \in [\tau^* - g\alpha cl (F)^+](V)$ and hence $F^+(V) \subset [\tau^* - g\alpha cl (F)^+](V)$. So, that $[\tau^* - g\alpha cl (F)^+](V) = F^+(V)$.

Theorem: 3.10

Let $F:(X,\tau^*)\to (Y,\sigma)$ be punctually α -regular and punctually α -paracompact. Then F is upper τ^* -g α continuous if and only if τ^* -g $\alpha cl(F)$: $(X,\tau^*)\to (Y,\sigma)$ is upper τ^* -g α continuous.

Proof:

Suppose that F is upper τ^* -g α continuous. Let $x \in X$ and V be any open set of Y such that τ^* -g α cl $(F)(x) \subset V$. By Lemma 3.9, we have $x \in [\tau^*$ -g α cl $(F)]^+(V) = F^+(V)$. Since F is upper τ^* -g α continuous, there exists $U \in \tau^*$ -g $\alpha(X)$ containing x such that $F(U) \subset V$. Since F(u) is α -paracompact and α -regular for each $u \in U$, by Lemma 3.8, there exists an open set H such that $F(u) \subset H \subset cl$ $(H) \subset V$. Then, we have τ^* -g α cl $(F(u)) \subset cl$ $(H) \subset V$ for each $u \in U$ and hence τ^* -g α cl $(F(U)) \subset V$. Hence τ^* -g α cl (F) is upper τ^* -g α continuous.

Conversely assume that τ^* -gacl (F): $(X, \tau^*) \to (Y, \sigma)$ is upper τ^* -ga continuous. Let $x \in X$ and V be any open set of Y such that $F(x) \subset V$. By Lemma 3.9, we have $x \in F^+(V) = [\tau^*$ -gacl (F) $^+$](V) and hence $[\tau^*$ -gacl (F) $(x) \subset V$. Since τ^* -gacl (F) is upper τ^* -ga continuous, there exists $U \in \tau^*$ -ga(X) containing x such that τ^* -gacl $(F(U)) \subset V$; hence $F(U) \subset V$. Then F is upper τ^* -ga continuous.

Theorem: 3.11

A multifunction $F:(X,\tau^*)\to (Y,\sigma)$ is lower τ^* -ga continuous if and only if τ^* -gacl $(F):(X,\tau^*)\to (Y,\sigma)$ is lower τ^* -ga continuous.

Theorem: 3.12

If $F: (X, \tau^*) \to (Y, \sigma)$ is upper (resp. lower) τ^* -ga continuous and F(X) is endowed with subspace topology, then $F: X \to F(X)$ is upper(resp. lower) τ^* -ga continuous.

Proof:

Since $F: (X, \tau^*) \to (Y, \sigma)$ is upper(resp. lower) τ^* -ga continuous for every open subset V of Y, $F^+(V \cap F(X)) = F^+(V) \cap F^+(F(X)) = F^+(V)$ is τ^* -ga open. Hence $F: X \to F(X)$ is upper (resp. lower) τ^* ga continuous.

Theorem: 3.13

Let $F:(X,\tau^*)\to (Y,\sigma)$ and $G:(Y,\sigma)\to (Z,\mu)$ be two multifunctions. Then $G\circ F$ is upper (resp. lower) τ^* -ga continuous, if G is semi continuous and F is τ^* -ga continuous.

Proof:

Let V be an open set in Z. Since G is semi continuous then $(G^+(V))$ is an open set in Y and since F is τ^* -ga continuous then $F^+(G^+(V)) = (G \circ F)^+(V)$ is an τ^* -ga open set in X. Thus $G \circ F$ is upper (resp. lower) τ^* -ga continuous.

Theorem: 3.14

Let F: $(X, \tau^*) \to (Y, \sigma)$ be a multifunction and A be an open subset of X. If F is upper (resp. lower) τ^* -ga continuous, then F/A: A \to Y is upper (resp. lower) τ^* -ga continuous multifunction.

Proof:

Let V be any open subset of Y. Since F is upper (resp. lower) τ^* -ga continuous, then $F^+(V)$ is τ^* -ga open in X. Since $A \cap F^+(V) = F^+|_A(V)$, then $F^+|_A(V)$ is τ^* -ga open. Hence F $|_A$ is upper (resp. lower) τ^* -ga continuous multifunction.

Theorem: 3.15

Let $F:(X, \tau^*) \to (Y, \sigma)$ be a multifunction and $\{U\alpha : \alpha \in \Delta\}$ be an open cover of X. If the restriction function $F|_{U_\alpha}$ is upper τ^* -ga continuous for each $\alpha \in \Delta$, then F is upper τ^* -ga continuous.

Proof:

Let V be any open subset of Y. Since F/U_{α} is upper τ^* -ga continuous for each $\alpha \in \Delta$, then F^+/U_{α} (V) = $U_{\alpha} \cap F^+(V)$ is τ^* -ga open set.

Then $\bigcup_{\alpha \in \Delta} (U_{\alpha} \cap F^{+}(V) = \bigcup_{\alpha \in \Delta} (U_{\alpha}) \cap F^{+}(V) = X \cap F^{+}(V) = F^{+}(V)$ is τ^{*} -ga open set. Hence, F is upper τ^{*} -ga continuous.

4. SOME PROPERTIES

Lemma: 4.1 [15]

Let A and B be subsets of a topological space X.

(i)If $A \in sO(X) \cup pO(X)$ and $B \in \alpha(X)$, then $A \cap B \in \alpha(A)$.

(ii)If $A \subset B \subset X$, $A \in \alpha(B)$ and $B \in \alpha(X)$, then $A \in \alpha(X)$.

Theorem: 4.2

If a multifunction, $F:(X, \tau^*) \to (Y,\sigma)$ is upper(resp. lower) τ^* -ga continuous $X_0 \in \tau^*$ -gpO(X) $\cup \tau^*$ -gsO(X), then the restriction $F / X_0: X_0 \to Y$ is upper(resp. lower) τ^* -ga continuous.

Proof:

We prove that, F is upper τ^* -g α continuous. Let $x \in X_0$ and V be any open set of Y such that $(F/X_0)(x) \subset V$. Since F is upper τ^* -g α continuous and $(F/X_0)(x)$ =F(x) there exists $U \in \tau^*$ -g α (X) containing x such that $F(U) \subset V$. Set $X_0 = F \cap X_0$, then by lemma 4.1, $x \in X_0 \in \tau^*$ -g α (X) and $(F/X_0)(x) \subset V$. Hence $(F/X_0)(x) \subset V$ is upper τ^* -g α continuous.

Theorem: 4.3

A multifunction $F: (X, \tau^*) \to (Y, \sigma)$ is upper(resp. lower) τ^* -ga continuous if for each $x \in X$ there exists $X_0 \in \tau^*$ -ga(X)containing x such that the restriction $F/X_0: X_0 \to Y$ is upper (resp.lower) τ^* -ga continuous.

Proof

We prove that, F is upper τ^* -g α continuous. Let $x \in X$ and V be any open set of Y such that $F(x) \subset V$. There exists $X_0 \in \tau^*$ -g $\alpha(X)$ containing x such that F/X_0 is upper τ^* -g α continuous.

Then there exists $\bigcup_0 \in \tau^* - g\alpha(X_0)$ containing x such that $(F/X_0) \subset X_0$. By lemma $4.1 \bigcup_0 \in \tau^* - g\alpha(X)$ and $F(u) = (F/X_0)(u)$ for every $u \in U_0$. Hence, $F: (X, \tau^*) \to (Y, \sigma)$ is upper $\tau^* - g\alpha$ continuous.

Theorem: 4.4

If $F:(X, \tau^*) \to (Y, \sigma)$ is upper τ^* -ga continuous multifunction into a Hausdroff space Y and F(x) is compact

for each $x \in X$, then the graph G(F) is τ^* -ga closed in X×Y

Proof:

Let $(x, y) \in X \times Y - G(F)$. Then $y \in Y - F(x)$. For each $a \in F(x)$, there exist open sets V(a) and W(a) containing a and y, respectively, such that $V(a) \cap W(a) = \emptyset$. The family $\{V((a))/a \in F(x)\}$ is an open cover of F(x) and there exist a finite number of points in F(x), say, a_2 , $a_1 \dots a_n$ such that $F(x) \subset V(x_i)/1 \le i \le n$. Set V = U $\{V(x_i)/1 \le i \le n\}$ and $W=n\{W(a_i)\}/1 \le i \le n\}$. Since $F(x) \subset V$ and F is upper τ^* -ga continuous, there exists $U \in V$ τ^* -ga(X) such that $x \in U$ and $F(U) \subset V$. So, we obtain $F(U) \cap W = \emptyset$ and hence $(U \times W) \cap G(F) = \emptyset$. Since $U \times W$ is τ^* -ga-open X ×Y and $(x, y) \in U \times W$, $(x,y) \notin \tau^*$ -gacl (G(F)) and G(F) is τ^* -ga closed in X×Y.

REFERENCES:

- [1] G Di Maio, T.Noiri, On S- closed spaces, Indian J.Pure Appl.Math.18(1987), 226-233.
- [2] W. A.Dunham, New closure operator For Non- T₁ Topologies, Kyungpook Math. J.22 (1982), 55-60.
- [3] S. Eswaran, A. Pushpalatha, τ^* generalized continuous functions in topological spaces, International Math.Sci & Engg. Appls. (IJM-SEA) ISSN 0973-9424 Vol.3, No.IV,(1009), 67-76.
- [4] Y Gnanambal, On generalized pre regular sets in topological spaces, Indian J.Pure Appl.Math. 28(3)(1997), 351-360.
- [5] I Kovacevic, Subsets and paracompactness, Univ. u.Novom sadu zb.Rad.prirod.-Mat. Fak. Ser. Mat.14(1984),79-87.
- [6] S.N.Maheshwari, S.S.Thakur, On α compact spaces, Bull.Inst.Math. Acad. Sinica 13(1985), 341-347.
- [7] H Maki, R.Devi and K.Balachandran, Assiciated topologies of generalized α closed sets. Mem.Fac.Sci.Kochi Univ(math) 15 (1994),51-63.
- I.A. Hasanein, S.N. El-Deeb, α -continuous and α -open mappings, Acta [8] A.S.Mashhour, Math.Hungar.41(1983), 213-218.
- [9] O.Njastad, On some classes of nearly open sets, Pacific J. Math .15 (1965), 961-970.
- [10] T.Neubrunn, Strongly quasi-continuous multivalued mappings. In: General Topology and its Relations to Modern Analysis and Algebra VI (prague 1986), Heldermann, Berlin, 1988,pp. 351-359.
- [11] T.Noiri, G.Dimaio, Properties of α -compact spaces, In: Third National conference on Topology (Trieste, 1986) (Italian) Rend.circ.Mat.palermo(2) suppl. 18(1988), 359-369.
- [12] T.Noiri, On α continuous functions, Casopis Pest.Mat.109(1984), 118-126.
- [13] T.Noiri, A function which preserves connected spaces, casopis pest.Mat.207(1982), 393-396.
- [14] Reilly, I.L and Vamanamurthy, M.K.: Connectedness and strong semi-continuity, casopis pest.Mat.109(1984),261-265.
- [15] Valeriu Popa, Takashi Noiri, On upper and lower α -continuous multifunctions, Math. Slovaca, 43(1993).No.4, 477-491.
- [16] WineD., Locally paracompact spaces, Glasnik Mat. 10 (30) (1975), 351-357.